Innover

par la technologie

aptitude des alliages d’aluminium : l’évaporation des éléments chimiques comme facteur clé ?


L’évaporation des éléments chimiques lors de la fusion laser sur lit de poudre est un phénomène logique qui influence l’aptitude d’un alliage d’aluminium à être utilisé en fusion laser. Plus précisément, l’explication de ce phénomène aide à déterminer si une pièce fabriquée dans tel ou tel alliage d’aluminium présentera des fissurations à chaud. Et donc, si la pièce pourra assurer sa fonction ou pas. Il est important pour les industriels de comprendre et de maîtriser ce phénomène d’évaporation des éléments chimiques, surtout lorsqu’ils souhaitent se lancer dans la fabrication de pièce via ce procédé phare de l’Industrie du futur.

Des données de fabrication qui expliquent le phénomène d’évaporation

Grâce à la conduction, la trajectoire du faisceau laser sur le lit poudre forme un cordon de soudure qui peut être modélisé par un bain de fusion de forme hémisphérique. En accord avec les lois qui régissent ce mode opératoire -la conduction-, il est possible de déterminer bon nombre de facteurs qui influeront sur la fabrication (température du bain de fusion, température de l’enveloppe,etc) et d’en extraire des données de fabrication cruciales pour chaque alliage d’aluminium. Des données qui peuvent être utiles à tout professionnel de l’Industrie qui s’intéresse de près ou de loin à la fabrication additive.

tableau alliage aluminium fusion laser

Vos matériaux
sont-ils aptes ?

 

Nos experts vérifient l’aptitude de tous vos matériaux métalliques y compris celle de vos alliages d’aluminium pour une utilisation en fusion laser sur lit de poudre.

– OU –

Si besoin, nous cherchons pour vous un équivalent qui disposera des mêmes propriétés mécaniques.

 Vérifier l’aptitude du matériau

En fonction de l’alliage d’aluminium, la température maximale atteinte dans le bain de fusion oscille entre 1061°C et 1411°C. À ces températures il est logique que certains éléments chimiques s’évaporent et disparaissent jusqu’à rendre la pièce fabriquée inutilisable car trop assujettie à la défaillance. Les éléments chimiques responsables sont donc ceux qui disposent des points d’évaporation les plus bas.

Des évaporations qui modifient les compositions chimiques des alliages d’aluminium

Avec un point d’évaporation situé à 1090°C pour l’un et à 907°C pour l’autre, le Magnésium (Mg) et le Zinc (Zn) sont les deux éléments chimiques qui possèdent le plus gros taux d’évaporation lors d’une fabrication par fusion laser sur lit de poudre. L’explication se retrouve bien sûr dans le tableau précédent. Les températures qui sont en effet atteintes lors de la fabrication sont bel et bien supérieures aux points d’évaporation du Magnésium et du Zinc.

En revanche, l’évaporation semble épargner les autres éléments chimiques au vu du peu, ou de l’absence totale, de variations dans les taux constatés avant et après la fusion laser sur lit de poudre. Le taux de Manganèse (Mn) par exemple n’évolue jamais à la baisse car son point d’évaporation est situé à 2061°C. Soit une température jamais atteinte lors de la fabrication.

En savoir plus

L’évaporation des éléments chimiques est l’un des sujets que nous avons étudié dans une publication dédiée à l’aptitude à la fabrication additive des alliages d’aluminium, consultez  et téléchargez la publication.



les taux des éléments chimiques varient à cause de l'évaporation

Privilégier les alliages d’aluminium avec des taux de Mg et Zn élevés

L’évaporation des éléments chimiques lors de la fusion laser sur lit de poudre provoque des modifications de compositions chimiques. Or, il s’agit là d’un des principaux facteurs responsables du phénomène de fissuration à chaud. L’un des principaux donc, mais pas le seul. La comparaison de sections métallographiques réalisées sur différents alliages d’aluminium démontre que malgré l’évaporation, certains alliages présentent des fissurations et d’autres non. L’explication réside dans le fait que l’influence du procédé sur la matière est telle que réduire la question de l’aptitude d’un alliage à sa simple propension à l’évaporation serait en réalité une négligence. Une négligence qui risque de s’avérer préjudiciable une fois passé à la phase d’industrialisation du procédé de fusion laser sur lit de poudre. Une chose est sûre. Il est important de prévoir les conséquences du phénomène d’évaporation des éléments chimiques lors de la fabrication pour s’en prémunir. Les alliages d’aluminium qui présentent des taux de Magnésium (Mg) et de Zinc (Zn) élevés doivent être privilégiés.

Pour se protéger de tous ces risques, les alliages d’aluminium doivent être étudiés au cas par cas. Tous ne sont pas aptes à être utilisés en fusion laser sur lit de poudre, c’est le cas par exemple de l’alliage 7020. Les sections métallographiques réalisées sur le matériau viennent le prouver puisque l’on y constate un nombre important de fissures. La combinaison entre le procédé de fusion laser et cet alliage a donc de grandes chances de donner naissance à des pièces qui défailliront une fois mises en fonction. En revanche, les résultats de l’alliage AlSi10Mg sont tout autres. Certes l’évaporation des éléments chimiques a bien lieu (on constate un taux de Mg qui passe de 0.75 avant fusion à 0.32 après fusion) mais aucune fissure n’est visible sur les sections métallographiques.

évaporation alliage 7020 fusion laser

évaporation éléments chimiques Alsi10Mg

fissuration à chaud alliage aluminium 7020

AlSi10Mg fissuration à chaud

En conclusion, le phénomène d’évaporation des éléments chimiques est un facteur important pour déterminer l’aptitude d’un alliage d’aluminium mais ce n’est pas le seul. Plusieurs autres phénomènes entrent en jeu et tous doivent être connus par les ingénieurs et les techniciens qui souhaitent maîtriser le procédé en vue de l’industrialisation. Tout industriel qui souhaite se lancer dans la production de pièces via la fusion laser sur lit de poudre doit donc s’attendre à voir la composition chimique de sa pièce évoluer au cours de la fabrication. Avant de lancer la fabrication, il est donc important de connaître l’influence de ce procédé novateur sur la matière car tous les alliages d’aluminium ne sont pas aptes à être utilisés en fabrication additive. C’est d’autant plus vrai lorsque la pièce est destinée à des secteurs sensibles comme l’aéronautique, l’aérospatial ou encore la défense.
Les métaux : cibles privilégiées du protectionnisme La fissuration à chaud en fusion laser Comment les essais de certification se retrouvent modifiés par la vague de l’IoT et des objets connectés ? aptitude des alliages d’aluminium : l’évaporation des éléments chimiques comme facteur clé ? Lancement de SUPCHAD 2

L’écrouissage critique des alliages d’aluminium

Durcissement des alliages d’aluminium

Les durcissements par écrouissage ou structural permettent une augmentation des caractéristiques mécaniques des alliages : résistance à la traction (Rm), limite d’élasticité (Rp0,2%) et dureté. Il s’accompagne d’une diminution de l’allongement (A%) entraînant une perte de ductilité de l’alliage. Le choix entre durcissement par écrouissage et durcissement structural s’effectue en fonction de la famille d’alliages d’aluminium à traiter.

Le durcissement dit « structural » est obtenu grâce à la formation par précipitation d’une multitude de composés chimiques à l’issue d’une gamme de traitements thermiques. Lors de l’application d’une contrainte mécanique, la présence de ces précipités gêne la déformation plastique entraînant ainsi l’augmentation des caractéristiques mécaniques.

Ce mode concerne 3 familles (ou séries) d’alliage : Aluminium-Cuivre (série 2000), Aluminium-Magnésium-Silicium (série 6000) et Aluminium-Magnésium-Zinc (série 7000).

Le Durcissement par écrouissage

L’écrouissage est l’évolution des propriétés et de la microstructure d’un matériau cristallin lorsque sa structure interne subit une déformation plastique. Il en résulte un durcissement par la multiplication de défauts dans la maille cristalline (dislocations). Les procédés de déformation à froid comme le laminage, l’étirage, le tréfilage, ou des mises en œuvre par pliage ou chaudronnage produisent ce type de durcissement.

L’écrouissage de l’aluminium apporte une déformation de la matrice, qui stocke une petite partie de l’énergie (entre 2% et 10%), sous forme de défauts de maille. La densité et la distribution de ces défauts forment une sous-structure cellulaire et entrainent des hétérogénéités plus importantes dans la distribution des mailles défectueuses, appelées « bandes de déformation » et formant des emplacements privilégiés pour initier une recristallisation.

Traitement thermique après écrouissage : Le recuit

Lors de la mise en forme par déformation plastique d’une pièce en alliage d’aluminium, l’écrouissage généré entraîne une perte de ductilité de l’alliage. Afin de poursuivre la mise en forme sans décohésion du métal, il convient de restaurer un certain niveau de plasticité, opération obtenue grâce au recuit. On distingue deux types de recuits :

  • le recuit de restauration : il présente une macrographie dans laquelle le motif et l’orientation des grains sont en grande partie conservés par rapport à l’état écroui. L’adoucissement des propriétés est assez peu marqué, le grossissement des grains est très faible voire inexistant. Les recuits de restauration correspondent à un perfectionnement du réseau du métal écroui.
  • le recuit de recristallisation : Ce recuit à très haute température se caractérise par l’apparition progressive de nouveaux cristaux orientés différemment de ceux du motif d’écrouissage. C’est au cours de ce recuit de recristallisation que peuvent apparaître de gros grains. L’adoucissement est très marqué. Sur les alliages écrouis, l’adoucissement par recristallisation augmente avec le taux d’écrouissage avant recuit. La température de recuit nécessaire pour un adoucissement identique est d’autant plus basse que le taux d’écrouissage est élevé. Un taux d’écrouissage minimal du produit est nécessaire pour éviter un grossissement anormal du grain lors des recuits de recristallisation.

Les paramètres d'écrouissage pour les alliages d'aluminium

Retrouvez l’intégralité de ce tableau en téléchargeant la version PDF :

 



L’écrouissage critique

Pour chaque alliage, il existe une zone d’écrouissage pour laquelle le recuit risque d’entraîner un grossissement exagéré du grain défavorable pour la mise en forme et générant une altération de l’aspect de la pièce. La surface du métal après déformation peut prendre alors l’aspect inesthétique de « peau d’orange ». On définit donc la limite d’écrouissage critique inférieur (début de la zone d’écrouissage critique) et la limite d’écrouissage critique supérieur (fin de la zone d’écrouissage critique).

Lors d’un recuit, la grosseur moyenne du grain de recristallisation pour un alliage donné varie en sens inverse de l’écrouissage qui a précédé le recuit. On qualifie d’écrouissage « critique » le taux d’écrouissage pour lequel la recristallisation est rendue possible (aux conditions de recuit données). Le grain obtenu pour un écrouissage à ce taux précis est alors nommé « grain critique ».

Cette zone d’écrouissage critique est unique pour chaque matériau et dépend de nombreux facteurs: conditions de recuit, hérédité du matériau (nombre d’écrouissage/recuit subis) … Les limites d’écrouissage critique sont d’autant plus faibles que la température de recuit est élevée, à l’inverse, la grosseur du grain critique est d’autant plus importante que la température de recuit est élevée. En résumé, plus les limites sont faibles, plus la grosseur du grain critique est importante.

Facteurs influents

Certains éléments d’alliages, comme le manganèse, le zirconium ou le chrome, retardent la recristallisation, augmentent l’écrouissage critique et peuvent diminuer la grosseur du grain de recristallisation.

La vitesse de chauffage à la température de recuit a un effet important sur la grosseur du grain des alliages d’aluminium. Plus la vitesse est faible, plus le grain de recristallisation est gros.

Limitation de la grosseur des grains

Pour éviter le grossissement des grains dû à un écrouissage critique, deux moyens sont couramment utilisés :

  • Limiter l’écrouissage avant recuit à des valeurs telles que l’écrouissage critique ne soit pas atteint
  • Faire en sorte que l’écrouissage critique soit dépassé en tous points du produit pour que la texture finale soit recristallisée à grains assez fins

Ces deux moyens permettent d’éviter la zone d’écrouissage critique.

 écrouissage contrainte et allongement

Études illustrant le phénomène d’écrouissage critique

Alliages testés

L’étude a porté sur des alliages couramment utilisés industriellement :

  • 2 alliages à durcissement structural : 2017A état T4 (famille aluminium-cuivre) et 6061 état T6 (famille aluminium-magnésium-silicium)
  • 1 alliage à durcissement par écrouissage : 5083 état recuit (O) (famille aluminium-magnésium)

État T4 : alliage ayant subi une gamme de traitements thermiques composée d’une mise en solution (maintien à 500°C pendant 1 heure), suivi d’une trempe à l’eau froide (T≤ 40°C) puis d’une maturation (durée de 4 jours à température ambiante)

État T6 : alliage ayant subi une gamme de traitements thermiques composée d’une mise en solution (maintien à 535°C pendant 1 heure), suivi d’une trempe à l’eau froide (T≤ 40°C) puis d’un revenu (maintien à 185°C pendant 6 heures)

Nature des essais

Les essais ont été effectués sur des éprouvettes prismatiques de traction (à section rectangulaire) prélevées et usinées à partir d’échantillons de tôle de chaque alliage.

Différents taux d’écrouissage ont été obtenus par déformation plastique par traction des éprouvettes (caractérisée par l’allongement A%). Différents recuits ont été par la suite effectués sur les éprouvettes en faisant varier les paramètres temps de maintien et température de four. 

Des examens micrographiques ont ensuite été réalisés pour observer la microstructure de chaque alliage :

  • Enrobage, polissage des échantillons
  • Mise en évidence de la structure de chaque alliage après attaque métallographique
  • Observation des échantillons au microscope optique sous lumière polarisée

Des experts pour vous accompagner

Du choix des matériaux et des traitements jusqu’à l’analyse de défaillance et le contrôle métallurgique, laissez nos experts de la métallurgie accompagner le développement de votre entreprise.

 

Découvrir notre savoir-faire

Résultats des essais

La faible plasticité de l’alliage 2017A à l’état T4 n’a pas permis d’atteindre un taux d’écrouissage suffisant pour observer le grain de recristallisation critique. Afin de bénéficier du maximum de plasticité de chaque alliage, les alliages 2017A et 6061 ont été préalablement recuits avant la campagne d’essais d’écrouissage et de recuit.

  • Avec les paramètres d’essais pratiqués, aucune recristallisation n’a pu être obtenue pour l’alliage 2017A, ceci est dû en partie à la présence d’inhibiteurs de grossissement de grains et de recristallisation (fer, chrome, manganèse) dans cet alliage.
  • Pour les alliages 5083 et 6061, le taux d’écrouissage critique a été respectivement atteint pour 11% et 13%. Il y a eu recristallisation et formation de grains critiques de grande taille.

Alliage 5083 : résultats des clichés micrographiques

analyse métallurgique après écrouissage

allongement gros grain écrouissage

Alliage 6061 : résultats des clichés micrographiques

analyse métallurgique sur alliage 6061

analyse métallurgique alliage 6061 écrouissage

 

Auteur de l’article : Hervé Gransac
Tèl. : 02 38 69 79 54

Échanger avec l’auteur

Les métaux : cibles privilégiées du protectionnisme La fissuration à chaud en fusion laser Comment les essais de certification se retrouvent modifiés par la vague de l’IoT et des objets connectés ? aptitude des alliages d’aluminium : l’évaporation des éléments chimiques comme facteur clé ? Lancement de SUPCHAD 2